Lecture 27 More Polymers

Final Exam

- Where: GSB 2.124!!
- When: Tuesday, May 21st, 9 AM Noon
- Do: Study lecture notes, homework, reading
- Practice: Hydrolysis, signatures...and synthesis.
- Review: Spectroscopy and "unknowns"
- Please: Do a good job!

See web site for old exams

GSB 2.124

Distribution of Molecular Weights

Polymers: Molecular Weight

- Ratio of M_w to M_n is known as the polydispersity index (PDI) Đ
 - a measure of the breadth of the molecular weight distribution
 - Đ = 1 indicates $M_w = M_n$, i.e. all molecules have equal length (monodisperse)
 - Đ = 1 is possible for natural proteins whereas synthetic polymers have 1.1 < PI < 5
 - At best Đ < 1.1 can be attained with special techniques

Basic Types of Polymerization Mechanisms

Chain growth system

The characteristic of a chain polymer is that polymer growth takes place by monomer reacting only with the reactive centers. Monomer does not react with monomer and the different-sized species such as dimer, trimer, and n-mer do not react with each other. If they do, they are no longer reactive. The polymerization ceases when the active center is destroyed by termination reaction(s).

Chain-Growth Polymers

- Chain-growth polymerization: a polymerization that involves sequential addition reactions, either to unsaturated monomers or to monomers possessing other reactive functional groups
- Reactive intermediates in chain-growth polymerizations include radicals, carbanions, carbocations, and organometallic complexes

Step Growth system

A condensation takes place between two polyfunctional molecules to produce one larger polyfunctional molecule with the *possible* elimination of a small molecule such as water. The reaction continues until one of the reagents is used up.

Distinguishing features of chain- and step-polymerization mechanisms

Chain Polymerization	Step Polymerization
Only growth reaction adds repeating units one at a time to the chain.	Any two molecular species present can react.
Monomer concentration decreases steadily throughout reaction.	Monomer disappears early in re- action: at DP* 10, less than 1% monomer remains.
High polymer is formed at once; polymer molecular weight changes little throughout reaction.	Polymer molecular weight rises steadily throughout reaction.
Long reaction times give high yields but affect molecular weight little.	Long reaction times are essential to obtain high molecular weights.
Reaction mixture contains only mon- omer, high polymer, and about 10^{-8} part of growing chains.	At any stage all molecular species are present in a calculable distri- bution.

Comparison of Step and Chain

Step Growth

- Growth throughout the matrix between monomers, oligomers and polymers
- DP is low to moderate
- Monomer is consumed rapidly but Mw increases slowly
- No initiator needed and reaction same throughout process
- No termination step...chain ends still reactive
- Rate decreases steadily as functional groups are consumed

Chain Growth

- Successive addition of monomer to a limited number of growing chain ends
- DP can be very high
- Initiation and propagation reactions are different
- Generally a chain termination step
- Polymerization rate increases initially remains relatively constant until monomer depleted

Chain Growth Polymerization

FIGURE 1.5. Chain-reaction polymerization: (a) unreacted monomer; (b) 50% reacted, $\overline{DP} = 1.7$; (c) 75% reacted, $\overline{DP} = 3$; (d) 100% reacted, $\overline{DP} = 12$. (Broken lines represent reacting species.)

Chemistry 328N

 $DP = N_0/N = 12/7 = 1.7$ (for 50%, b)

Step Growth Polymerization

FIGURE 1.4. Step-reaction polymerization: (a) unreacted monomer; (b) 50% reacted, DP = 1.3; (c) 75% reacted, $\overline{DP} = 1.7$; (d) 100% reacted, $\overline{DP} = 3$. (Broken lines represent reacting species.)

 $DP = N_0/N = 12/9 = 1.3$ (for 50%, b)

The chain growth vs. step growth

Step-growth polymerization

Chain-growth polymerization

Let's look at this Step Growth System more closely....

Consider a flask of monomer....If there are N_o molecules in the flask at time = 0 and N remaining at time t then the DP at time t is the average degree of polymerization... must just be N_0/N

The Carothers Equation High Molecular weights are hard to get this way

If there are N_0 molecules at time = 0 and N remaining at time t then the amount reacted is N_0 -N and we can define p as a "conversion" or fraction reacted at time t then as

> $P = (N_o - N) / N_o$ or $N = N_o (1 - P)$

If DP is the average degree of polymerization... N_0/N substituting gives

N/No = (1 - P) or

DP = 1 / (1 - P)

and for P = 0.98 (98% conversion), DP = only 50!

Chemistry 328N

The step growth system It all happens at the end!!!

The chain growth system The relationship between DP and conversion With termination reactions...steady state

More Historical Figures

Wilhelm Schlenk

Michael Szwarc

Anionic polymerization Some History

- **1914, Schlenk reacts Na with butadiene and styrene**
- 1929, Ziegler proposes a mechanism
- 1952 Higginson, styrene, KNH₂, kinetic study
- 1956 Szwarc, sodium naphthalene, Styrene,
 - living polymerization conception

- 60's, commercial products were available
- 90's, study on the living polymerization of polar

monomers

Alkenes with electron Withdrawing Groups undergo anionic polymerization

Classical Monomers

styrene

 α -Me-styrene

Reactivity of monomers

Group A:
$$H_2C = C(CN)_2 \rightarrow H_2C = C - COOC_2H_5 \rightarrow H_2C = CH$$

 $CN \rightarrow H_2C = C - CH_3 \rightarrow H_2C = CH - C - CH_3$ Group B: $H_2C = CHCN \rightarrow H_2C = C - CH_3 \rightarrow H_2C = CH - C - CH_3$
 $CN \rightarrow 0$ Group C: $H_2C = CH \rightarrow H_2C = C - CH_3$
 $COOCH_3 \rightarrow COOCH_3$ Group D: $H_2C = CH - CH = CH_2$ H_2C = CH - CH = CH_2 $H_2C = CH - CH = CH_2$ Chemistry 328N

Anionic Initiators and initiation

(1) alkali metalsone electron reductions

Break Seal Glassware

Figure 2. Breaker with break-seal and constri-

Figure 3. Apparatus for short-path distillation of high-boiling point substances.

Schlenk Tube Approach

Anionic Polymerization Apparatus

 \mathbf{Y}

Szwarc's Experiment

The Living Polymerization

Anionic Polymerization of diblock copolymer

Polymer Blends

Polymers do not generally form blends or "alloys".

- About 99% of binary blends are heterogeneous except for small regions of the phase diagram
- Ethylene and propylene are mutually soluble, but polyethylene and polypropylene are not.

Block co-polymers

- Covalent linkage of two or more polymers that are intrinsically incompatible.
- Synthesis requires "special" techniques.

Miracle of Block Copolymers

SBS Thermoplastic Elastomer

Krayton

Orienting Block Copolymers

Directed self-assembly

How

8nm lines in block copolymers

Etch developed 50 Angstrom lines and spaces

